ncdia.utils¶
ncdia.utils.metrics¶
ncdia.utils.metrics.accuracy¶
accuracy(output, target, topk=(1,))
Computes the accuracy over the k-top predictions for the specified values of k.
Parameters:
- output (torch.Tensor): model output, shape (batch_size, num_classes)
- target (torch.Tensor): target labels, shape (batch_size)
- topk (tuple): top-k values, default is (1,)
Returns:
- acc (list): accuracy values for each k in topk
per_class_accuracy(output, target, topk=(1, ))
Compute per class accuracy over the k-top predictions for the specified values of k
Parameters:
- output (torch.Tensor): model output, shape (batch_size, num_classes)
- target (torch.Tensor): target labels, shape (batch_size)
- topk (tuple): top-k values, default is (1,)
Returns:
- acc (list): accuracy values for each k in topk
ncdia.utils.metrics.meter¶
AverageMeter
Computes and stores the average and current value.
ncdia.utils.losses¶
CrossEntropyLoss¶
CrossEntropyLoss with label smoothing.
AngularPenaltySMLoss¶
Angular Penalty Softmax Loss. Three loss_types
available: arcface
, sphereface
, cosface
ncdia.utils.cfg¶
Configs¶
Include implementation of setup and use of configs.
ncdia.utils.logger¶
Include implementation of loggers to write output to console and external text file.
ncdia.utils.registry¶
Registry¶
A registry to map strings to classes or functions.
Examples:
Text Only | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
|
register_callable(self, target: callable)
Register a target.
Parameters:
- target (callable): callable target to be registered.
register_dict(self, target)
Register a dict.
Parameters:
- target (dict): A dict to be registered. All its values should be callable.
register(self, target)
Register a target.
Parameters:
- target (callable | dict): target to be registered.
Returns:
- target (object): Registered target.
build(self, target: dict | Configs, **kwargs)
Build a target with configs.
Parameters:
- target (dict | Configs): A dict to be built. It should have a key 'type' to specify the target type. It may have other keys to specify the target configs.
- kwargs (dict): Additional keyword arguments.
Returns:
- target (object): A built target.
ncdia.utils.tools¶
mkdir_if_missing(dirname)
Create dirname if it is missing.
Parameters:
- dirname (str): directory path
auto_device(device)
Automatically set the device for the input tensor.
Parameters:
- device (str | torch.device): device name or device object. If
None
, returntorch.device('cuda')
if available, otherwise returntorch.device('cpu')
.
set_random_seed(seed)
Set random seed for reproducibility.
Parameters:
- seed (int): random seed