ncdia.model¶
ncdia.models.models¶
get_network(config)
load model.
Parameters:
- trainer(config): model config
ncdia.models.net.inc_net¶
BaseNet¶
BaseNet for incremental learning.
__init__(self, network, base_classes, num_classes, att_classes, net_alice, mode)
The constructor method that initializes an instance of BaseNet.
Parameters:
- network (config): The config of the network.
- base_classes(int): The number of base classes.
- num_classes(int): The total class number.
- att_classes(int): The attribute class number.
- mode(str): classifier mode.
feature_dim(self)
The feature dimension of the network.
Returns:
- out_dim(int) feature dimension of the network.
extractor_vector(self, x)
get features of input x.
Parameters:
- x(tensor): input data.
Returns:
- out_features(tensor) features of the input.
forward(self, x)
forworad pass of the network.
Parameters:
- x(tensor): input data.
Returns:
- results (dict): forward pass results. Contains the following keys:
- "fmaps": [x_1, x_2, ..., x_n],
- "features": features
- "logits": logits
copy(self)
copy.
Returns:
- copy function.
freeze(self)
freeze parameters.
IncrementalNet¶
Incremental Network which follows BaseNet.
__init__(self, network, base_classes, num_classes, att_classes, net_alice, mode)
The constructor method that initializes an instance of BaseNet.
Parameters:
- network (config): The config of the network.
- base_classes(int): The number of base classes.
- num_classes(int): The total class number.
- att_classes(int): The attribute class number.
- mode(str): classifier mode.
update_fc(self, nb_classes)
Update fc parameter, generate new fc and copy old parameter.
Parameters:
- network (int): New class number.
Returns:
- fc: updated fc layers.
generate_fc(self, in_dim, out_dim)
Parameters:
- in_dim (int): new fc in dimension.
- out_dim (int): new fc out dimension.
Returns:
- fc: new fc layers.
forward(self, x)
forworad pass of the network.
Parameters:
- x(tensor): input data.
Returns:
- results (dict): forward pass results. Contains the following keys:
- "fmaps": [x_1, x_2, ..., x_n],
- "features": features
- "logits": logits
weight_align(self, increment)
Normalize classifer parameters.
Parameters:
- increment(int): incremental classes.